.. _ManzariDafalias: Manzari Dafalias Material ^^^^^^^^^^^^^^^^^^^^^^^^^ Code Developed by: **Alborz Ghofrani**, |pedro|, U. Washington This command is used to construct a multi-dimensional [Manzari-Dafalias2004]_ material. .. admonition:: function nDmaterial ManzariDafalias $matTag $G0 $nu $e_init $Mc $c $lambda_c $e0 $ksi $P_atm $m $h0 $ch $nb $A0 $nd $z_max $cz $Den .. csv-table:: :header: "Argument", "Type", "Description" :widths: 10, 10, 40 $matTag, |integer|, unique tag identifying material $G0, |float|, shear modulus constant $nu, |float|, poisson ratio $e_init, |float|, initial void ratio $Mc, |float|, critical state stress ratio $c, |float|, ratio of critical state stress ratio in extension and compression $lambda_c, |float|, critical state line constant $e0, |float|, critical void ratio at p = 0 $ksi, |float|, critical state line constant $P_atc, |float|, atmospheric pressure $m, |float|, yield surface constant (radius of yield surface in stress ratio space) $h0, |float|, constant parameter $ch, |float|, constant parameter $nb, |float|, bounding surface parameter $nb ≥ 0 $A0, |float|, dilatancy parameter $nd, |float|, dilatancy surface parameter $nd ≥ 0 $z_max, |float|, fabric-dilatancy tensor parameter $cz, |float|, fabric-dilatancy tensor parameter $Den, |float|, mass density of the material .. note:: The material formulations for the Manzari-Dafalias object are "ThreeDimensional" and "PlaneStrain" .. note:: #. Valid Element Recorder queries are: stress, strain alpha (or backstressratio) for :math:`\mathbf{\alpha}` fabric for :math:`\mathbf{z}` alpha_in (or alphain) for :math:`\mathbf{\alpha_{in}}` .. code:: tcl recorder Element -eleRange 1 $numElem -time -file stress.out stress #. Elastic or Elastoplastic response could be enforced by Elastic: updateMaterialStage -material $matTag -stage 0 Elastoplastic: updateMaterialStage -material $matTag -stage 1 Theory .. math:: p = \frac{1}{3} \mathrm{tr}(\mathbf{\sigma}) .. math:: \mathbf{s} = \mathrm{dev} (\mathbf{\sigma}) = \mathbf{\sigma} - \frac{1}{3} p \mathbf{1} Elasticity Elastic moduli are considered to be functions of p and current void ratio: .. math:: G = G_0 p_{atm}\frac{\left(2.97-e\right)^2}{1+e}\left(\frac{p}{p_{atm}}\right)^{1/2} .. math:: K = \frac{2(1+\nu)}{3(1-2\nu)} G The elastic stress-strain relationship is: .. math:: d\mathbf{e}^\mathrm{e} = \frac{d\mathbf{s}}{2G} .. math:: d\varepsilon^\mathrm{e}_v = \frac{dp}{K} Critical State Line A power relationship is assumed for the critical state line: .. math:: e_c = e_0 - \lambda_c\left(\frac{p_c}{p_{atm}}\right)^\xi where :math:`e_0` is the void ratio at :math:`p_c = 0` and :math:`\lambda_c` and :math:`\xi` constants. Yield Surface Yield surface is a stress-ratio dependent surface in this model and is defined as .. math:: \left\| \mathbf{s} - p \mathbf{\alpha} \right\| - \sqrt\frac{2}{3}pm = 0 with :math:`\mathbf{\alpha}` being the deviatoric back stress-ratio. Plastic Strain Increment The increment of the plastic strain tensor is given by .. math:: d\mathbf{\varepsilon}^p = \langle L \rangle \mathbf{R} where .. math:: \mathbf{R} = \mathbf{R'} + \frac{1}{3} D \mathbf{1} therefore :math:`d\mathbf{e}^p = \langle L \rangle \mathbf{R'}` and :math:`d\varepsilon^p_v = \langle L \rangle D` The hardening modulus in this model is defined as .. math:: K_p = \frac{2}{3} p h (\mathbf{\alpha}^b_{\theta} - \mathbf{\alpha}): \mathbf{n} where :math:`\mathbf{n}` is the deviatoric part of the gradient to yield surface. :math:`\mathbf{\alpha}^b_{\theta} = \sqrt{\frac{2}{3}} \left[g(\theta,c) M_c exp(-n^b\Psi) - m\right] \mathbf{n} `, :math:`\Psi` being the state parameter. the hardening parameter :math:`h` is defined as .. math:: h = \frac{b_0}{(\mathbf{\alpha}-\mathbf{\alpha_{in}}):\mathbf{n}} :math:`\mathbf{\alpha_{in}}` is the value of :math:`\mathbf{\alpha}` at initiation of loading cycle. .. math:: b_0 = G_0 h_0 (1-c_h e) \left(\frac{p}{p_{atm}}\right)^{-1/2} Also the dilation parameters are defined as .. math:: D = A_d (\mathbf{\alpha}^d_{\theta}-\mathbf{\alpha}) : \mathbf{n} .. math:: \mathbf{\alpha}^d_{\theta} = \sqrt{\frac{2}{3}} \left[g(\theta,c) M_c exp(n^d\Psi) - m\right] \mathbf{n} .. math:: A_d = A_0 (1+\langle \mathbf{z : n}\rangle) where :math:`\mathbf{z}` is the fabric tensor. The evolution of fabric and the back stress-ratio tensors are defined as .. math:: d\mathbf{z} = - c_z \langle -d\varepsilon^p_v \rangle (z_{max}\mathbf{n}+\mathbf{z})` .. math:: d\mathbf{\alpha} = \langle L \rangle (2/3) h (\mathbf{\alpha}^b_{\theta} - \mathbf{\alpha}) .. admonition:: Example This example, provides an undrained confined triaxial compression test using one 8-node SSPBrickUP element and ManzariDafalias material model. .. literalinclude:: ManzariDafaliasExample.tcl :language: tcl .. [Manzari-Dafalias2004] Dafalias YF, Manzari MT. "Simple plasticity sand model accounting for fabric change effects". Journal of Engineering Mechanics 2004