.. _HystereticPoly: HystereticPoly Material ^^^^^^^^^^^^^^^^^^^^^^^ This command is used to construct the uniaxial HystereticPoly material producing smooth hysteretic loops and local maxima/minima. It is based on a polynomial formulation of its tangent stiffness. .. function:: uniaxialMaterial HystereticPoly $matTag $ka $kb $alpha $beta1 $beta2 <$delta> .. csv-table:: :header: "Argument", "Type", "Description" :widths: 10, 10, 40 $matTag, |integer|, integer tag identifying material. $ka, |float|, Tangent stiffness of the initial "elastic" part of the loop. $kb, |float|, Tangent stiffness of the asymptotic part of the loop. $alpha, |float|, Parameter governing the amplitude of the loop. $beta1, |float|, Parameter governing the shape of the asymptotic region of the loop. $beta2, |float|, Parameter governing the shape of the asymptotic region of the loop. $delta, |float|, Asymptotic tolerance (optional. Default 1.0e-20). .. note:: Determination of constitutive parameters is quite intuitive and is reported below, although, their identification can be performed by the strategy formulated in [SessaEtAl2020]_ implemented in the freeware available `here `_. The original formulation of HystereticPoly is reported in [VaianaEtAl2019]_. Minor changes have been made in its implementation for OpenSees and make reference to the enhanced formulation reported in [SessaEtAl2022]_ and [Sessa2022]_. The model may reproduce either force-displacement or stress-strain relationships. It is formulated by means of two asymptotic lines (blue) linked by transition curves (red): .. figure:: figures/HystereticPoly/HystereticPoly01.gif :align: center :figclass: align-center Parameter $alpha governs the transition between such curves so that: :math:`u_0=\frac{1}{2}\left[\left(\frac{k_a-k_b}{\delta}\right)^{1/\alpha}-1\right]` :math:`\bar{f}=\frac{k_a-k_b}{2}\left[\frac{\left(1+2u_0\right)^{1-\alpha}-1}{1-\alpha}\right]` Where :math:`\bar{f}` is the value at which the asymptotic line crosses the vertical axis and :math:`2u_0` is the generalized displacement for which the transition curve reaches the asymptotic line. In general, $alpha= :math:`\alpha` influences the amplitude of the loop: .. figure:: figures/HystereticPoly/HystereticPoly02.gif :align: center :figclass: align-center while parameters $beta1 and $beta2 modify the shape of the loop: .. figure:: figures/HystereticPoly/HystereticPoly03.gif :align: center :figclass: align-center .. admonition:: Example The following constructs a HystereticPoly material with tag **1**, parameters corresponding to line (d) of the table above and tolerance $delta = :math:`10^{-20}`. 1. **Tcl Code** .. code-block:: tcl uniaxialMaterial HystereticPoly 1 100.0 10.0 20.0 -10.0 10.0 1.0e-20 2. **Python Code** .. code-block:: python uniaxialMaterial('HystereticPoly', 1, 100.0, 10.0, 20.0, -10.0, 10.0, 1.0e-20) Code Developed by: `Salvatore Sessa `_, University of Naples Federico II, Italy .. [VaianaEtAl2019] Vaiana, N., Sessa, S., Marmo, F. and Rosati, L. (2019). "An accurate and computationally efficient uniaxial phenomenological model for steel and fiber reinforced elastomeric bearings." Composite Structures, 211: 196-212. `DOI: https://doi.org/10.1016/j.compstruct.2018.12.017 `_ .. [SessaEtAl2020] Sessa, S., Vaiana, N., Paradiso, M. and Rosati, L. (2020). "An inverse identification strategy for the mechanical parameters of a phenomenological hysteretic constitutive model.", Mechanical Systems and Signal Processing, 139: 106622. `DOI: https://doi.org/10.1016/j.ymssp.2020.106622 `_ .. [SessaEtAl2022] Sessa, S., Vaiana, N., Paradiso, M. and Rosati, L. (2022). "Thermodynamic Compatibility of the HystereticPoly Uniaxial Material Implemented in OpenSees.", Advanced Structured Materials, 175: 565 - 580. `DOI: https://doi.org/10.1007/978-3-031-04548-6_27 `_ .. [Sessa2022] Sessa, S. (2022). "Thermodynamic compatibility conditions of a new class of hysteretic materials.", Continuum Mechanics and Thermodynamics, 34(1): 61 - 79. `DOI: https://doi.org/10.1007/s00161-021-01044-w `_