.. _MEFI:: MEFI Element ^^^^^^^^^^^^^^^^^^^^ The Membrane Fiber (MEFI) element, is described by four nodes, each containing three degrees of freedom (DOFs), two translations, and one in-plane rotation (drilling) DOF, which incorporates a blended interpolation function for the displacements over the element. The element formulation accommodates the quadrature points and weights of the classical finite element formulation of membrane elements to resemble strips (fibers), similarly to macroscopic elements. .. figure:: figures/MEFI/MEFI_Element.jpg :align: center :figclass: align-center :width: 1000px :name: MEFI_FIG MEFI Element: (a) Element idealization; (b) Interpolation function at bottom and top edges; (c) Interpolation function at left and right edges. This command is used to construct a MEFI element object. .. admonition:: Command element MEFI $eleTag $iNode $jNode $kNode $lNode $numFib -width $widths -sec $secTags .. csv-table:: :header: "Parameter", "Type", "Description" :widths: 10, 10, 40 $eleTag, integer, unique element object tag $iNode $jNode $kNode $lNode, 4 integer, tags of element nodes defined in counterclockwise direction $numFib, integer, number of element macro-fibers $widths, list float, a list of *numFib* macro-fiber widths $secTags, list int, a list of *numFib* macro-fiber section tags The following recorders are available with the MEFI element. .. csv-table:: :header: "Recorder", "Description" :widths: 20, 40 forces, element global forces stresses, element stresses strains, element strains RCPanel $fibTag $Response, returns material $Response for a $fibTag-th panel (1 ≤ fibTag ≤ numFib). For available $Response(s) refer to material .. admonition:: Notes | 1. This element shall be used in domain defined with **-ndm 2 -ndf 3** | 2. For additional information please visit `MEFI GitHub Page `_ .. admonition:: Command Example The following example constructs a MEFI element with tag **1** between nodes **1, 2, 3, 4**, with **8** macro-fibers. Each macro-fiber has width **1** and material tag **1**. 1. **Tcl Code** .. code-block:: tcl element MEFI 1 1 2 3 4 8 -width 1 1 1 1 1 1 1 1 -sec 1 1 1 1 1 1 1 1; 2. **Python Code** .. code-block:: python element('MEFI', 1, 1, 2, 3, 4, 8, '-width', 1, 1, 1, 1, 1, 1, 1, 1, '-sec', 1, 1, 1, 1, 1, 1, 1, 1) .. admonition:: Pushover Example The following example creates a pushover analysis for a reinforced concrete wall. The example is based on specimen RW-A20-P10-S38 tested by Tran and Wallace (`2012 `_). 1. **Tcl Code** .. code-block:: tcl # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Description: Pushover analysis of specimen RW-A20-P10-S38 (Tran and Wallace, 2012) # Created by: Carlos López Olea (carloslopezolea@gmail.com) # Last Modification: 01/2024 # Basic units: N, mm, sec # ------------------------------------------------------------------------------------------------------------------------------------------------------ # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Start of model generation # ------------------------------------------------------------------------------------------------------------------------------------------------------ wipe model Basic -ndm 2 -ndf 3 # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Set geometry, nodes, boundary conditions # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Nodes for RC wall for {set i 1} {$i <= 8} {incr i} { node [expr 2*$i-1] 0.0 [expr (2209.8/7)*($i-1)] node [expr 2*$i] 1220.0 [expr (2209.8/7)*($i-1)] } # Nodes for loading transfer beam for {set i 9} {$i <= 10} {incr i} { node [expr 2*$i-1] 0.0 [expr 2209.8 + (457.2/2)*($i-8)] node [expr 2*$i] 1220.0 [expr 2209.8 + (457.2/2)*($i-8)] } # Restraint fixes fix 1 1 1 1 fix 2 1 1 1 # Node restraints equalDOF 15 16 1 equalDOF 17 18 1 equalDOF 19 20 1 # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Define and build materials # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Build uniaxial steel materials uniaxialMaterial Steel02 1 469.93 200000.0 0.02 20.0 0.925 0.15; # steel X uniaxialMaterial Steel02 2 409.71 200000.0 0.02 20.0 0.925 0.15; # steel Y web uniaxialMaterial Steel02 3 429.78 200000.0 0.01 20.0 0.925 0.15; # steel Y boundary # Build uniaxial concrete materials uniaxialMaterial Concrete02 4 -47.09 -0.00232 0.0 -0.037 0.1 2.13 1738.33; # unconfined concrete uniaxialMaterial Concrete02 5 -53.78 -0.00397 -9.42 -0.047 0.1 2.13 1827.12; # confined concrete # Build nD concrete materials nDMaterial OrthotropicRAConcrete 6 4 0.00008 -0.00232 0.0 -damageCte1 0.175 -damageCte2 0.5; # unconfined concrete nDMaterial OrthotropicRAConcrete 7 5 0.00008 -0.00397 0.0 -damageCte1 0.175 -damageCte2 0.5; # confined concrete # Build nD steel materials nDMaterial SmearedSteelDoubleLayer 8 1 2 0.0027 0.0027 0.0; # steel web nDMaterial SmearedSteelDoubleLayer 9 1 3 0.0082 0.0323 0.0; # steel boundary # Build reinforced concrete sections section RCLMS 10 1 1 -reinfSteel 8 -conc 6 -concThick 152.4; # wall web section RCLMS 11 1 2 -reinfSteel 9 -conc 6 7 -concThick 50.8 101.6; # wall boundary # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Define and build elements # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Build MEFI elements set numFib 8; # number of element macro-fibers set db 228.6; # boundary length discretization set dw 127.133; # web length discretization for {set i 1} {$i <= 9} {incr i} { element MEFI $i [expr 2*$i-1] [expr 2*$i] [expr 2*$i+2] [expr 2*$i+1] $numFib -width $db $dw $dw $dw $dw $dw $dw $db -sec 11 10 10 10 10 10 10 11; } # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Define recorders # ------------------------------------------------------------------------------------------------------------------------------------------------------ recorder Element -file MEFI/MEFI1_forces.out -time -ele 1 forces recorder Element -file MEFI/MEFI1_stresses.out -time -ele 1 stresses recorder Element -file MEFI/MEFI1_strains.out -time -ele 1 strains recorder Element -file MEFI/MEFI1_fiber1_strain.out -time -ele 1 RCPanel 1 panel_strain recorder Element -file MEFI/MEFI1_fiber1_stress.out -time -ele 1 RCPanel 1 panel_stress # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Gravity load analysis # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Define gravity load pattern pattern Plain 1 Linear { load 19 0.0 -320272.0 0.0 load 20 0.0 -320272.0 0.0 } # Analysis generation system BandGeneral constraints Transformation numberer RCM test NormUnbalance 100.0 100 0 algorithm Newton integrator LoadControl 0.05 analysis Static set ok [analyze 20] if {$ok == 0} { puts "Gravity analysis completed successfully"; } else { error "Gravity analysis failed"; } loadConst -time 0.0 wipeAnalysis # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Lateral load analysis # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Define lateral load pattern pattern Plain 2 Linear { load 15 1000.0 0.0 0.0 load 17 1000.0 0.0 0.0 load 19 1000.0 0.0 0.0 } # Analysis generation system BandGeneral constraints Transformation numberer RCM test NormDispIncr 0.001 100 0 algorithm Newton integrator DisplacementControl 17 1 0.1 analysis Static set ok [analyze 800] if {$ok == 0} { puts "Pushover analysis completed successfully"; } else { error "Pushover analysis failed"; } # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Perform tests # ------------------------------------------------------------------------------------------------------------------------------------------------------ # Base shear test reactions set BSref 421968.7; # reference value for base shear set BS [expr abs([nodeReaction 1 1] + [nodeReaction 2 1])]; # computed value for base shear set BSerr [expr abs($BS-$BSref)/$BSref]; # compute relative error puts "Relative base shear error is abs(BS-BSref)/BSref: $BSerr" if {$BSerr <= 0.0001} { puts "Base shear test completed successfully"; } else { error "Base shear test failed"; } **REFERENCES:** #. López, C. N., Rojas, F., & Massone, L. M. (2022). Membrane fiber element for reinforced concrete walls – the benefits of macro and micro modeling approaches. Engineering Structures, 254, 113819. (`link `_). **Code Developed by:** `C. N. López `_