3.1.6.5. Manzari Dafalias Material
Code Developed by: Alborz Ghofrani, Pedro Arduino, U. Washington
This command is used to construct a multi-dimensional [Manzari-Dafalias2004] material.
function
nDmaterial ManzariDafalias $matTag $G0 $nu $e_init $Mc $c $lambda_c $e0 $ksi $P_atm $m $h0 $ch $nb $A0 $nd $z_max $cz $Den
Argument |
Type |
Description |
---|---|---|
$matTag |
integer |
unique tag identifying material |
$G0 |
float |
shear modulus constant |
$nu |
float |
poisson ratio |
$e_init |
float |
initial void ratio |
$Mc |
float |
critical state stress ratio |
$c |
float |
ratio of critical state stress ratio in extension and compression |
$lambda_c |
float |
critical state line constant |
$e0 |
float |
critical void ratio at p = 0 |
$ksi |
float |
critical state line constant |
$P_atc |
float |
atmospheric pressure |
$m |
float |
yield surface constant (radius of yield surface in stress ratio space) |
$h0 |
float |
constant parameter |
$ch |
float |
constant parameter |
$nb |
float |
bounding surface parameter $nb ≥ 0 |
$A0 |
float |
dilatancy parameter |
$nd |
float |
dilatancy surface parameter $nd ≥ 0 |
$z_max |
float |
fabric-dilatancy tensor parameter |
$cz |
float |
fabric-dilatancy tensor parameter |
$Den |
float |
mass density of the material |
Note
The material formulations for the Manzari-Dafalias object are “ThreeDimensional” and “PlaneStrain”
Note
Valid Element Recorder queries are: stress, strain alpha (or backstressratio) for \(\mathbf{\alpha}\) fabric for \(\mathbf{z}\) alpha_in (or alphain) for \(\mathbf{\alpha_{in}}\)
recorder Element -eleRange 1 $numElem -time -file stress.out stress
#. Elastic or Elastoplastic response could be enforced by
Elastic: updateMaterialStage -material $matTag -stage 0
Elastoplastic: updateMaterialStage -material $matTag -stage 1
Theory
Elasticity Elastic moduli are considered to be functions of p and current void ratio:
The elastic stress-strain relationship is:
Critical State Line A power relationship is assumed for the critical state line:
where \(e_0\) is the void ratio at \(p_c = 0\) and \(\lambda_c\) and \(\xi\) constants.
Yield Surface Yield surface is a stress-ratio dependent surface in this model and is defined as
with \(\mathbf{\alpha}\) being the deviatoric back stress-ratio.
Plastic Strain Increment The increment of the plastic strain tensor is given by
where
therefore
\(d\mathbf{e}^p = \langle L \rangle \mathbf{R'}\) and \(d\varepsilon^p_v = \langle L \rangle D\) The hardening modulus in this model is defined as
where \(\mathbf{n}\) is the deviatoric part of the gradient to yield surface.
\(\mathbf{\alpha}^b_{\theta} = \sqrt{\frac{2}{3}} \left[g(\theta,c) M_c exp(-n^b\Psi) - m\right] \mathbf{n} `, :math:\)Psi` being the state parameter.
the hardening parameter \(h\) is defined as
\(\mathbf{\alpha_{in}}\) is the value of \(\mathbf{\alpha}\) at initiation of loading cycle.
Also the dilation parameters are defined as
where \(\mathbf{z}\) is the fabric tensor.
The evolution of fabric and the back stress-ratio tensors are defined as
Example
This example, provides an undrained confined triaxial compression test using one 8-node SSPBrickUP element and ManzariDafalias material model.
# HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH #
# 3D Undrained Conventional Triaxial Compression Test Using One Element #
# University of Washington, Department of Civil and Environmental Eng #
# Geotechnical Eng Group, A. Ghofrani, P. Arduino - Dec 2013 #
# Basic units are m, Ton(metric), s#
# HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH #
wipe
# ------------------------ #
# Test Specific parameters #
# ------------------------ #
# Confinement Stress
set pConf -300.0
# Deviatoric strain
set devDisp -0.3
# Permeablity
set perm 1.0e-10
# Initial void ratio
set vR 0.8
# Rayleigh damping parameter
set damp 0.1
set omega1 0.0157
set omega2 64.123
set a1 [expr 2.0*$damp/($omega1+$omega2)]
set a0 [expr $a1*$omega1*$omega2]
# HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
# HHHHHHHHHHHHHHHHHHHHHHHHHHHCreate ModelHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
# HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
# Create a 3D model with 4 Degrees of Freedom
model BasicBuilder -ndm 3 -ndf 4
# Create nodes
node 11.00.00.0
node 21.01.00.0
node 3 0.01.00.0
node 40.00.00.0
node 51.00.01.0
node 6 1.01.01.0
node 7 0.01.01.0
node 8 0.00.01.0
# Create Fixities
fix 1 0 1 1 1
fix 2 0 0 1 1
fix 31 0 1 1
fix 4 1 1 1 1
fix 50 1 0 1
fix 6 0 0 0 1
fix 71 0 0 1
fix 8 1 1 0 1
# Create material
# ManzariDafalias tag G0 nu e_init Mc c lambda_c e0 ksi P_atm m h0 ch nb A0 nd z_max cz Den
nDMaterial ManzariDafalias 1 125 0.05 $vR 1.25 0.712 0.019 0.934 0.7 100 0.01 7.05 0.968 1.1 0.704 3.5 4 600 1.42
# Create element
# SSPbrickUP tag i j k l m n p q matTag fBulk fDen k1 k2 k3 void alpha <b1 b2 b3>
element SSPbrickUP 1 1 2 3 4 5 6 7 8 1 2.2e6 1.0 $perm $perm $perm $vR 1.5e-9
# Create recorders
recorder Node -file disp.out -time -nodeRange 1 8 -dof 1 2 3 disp
recorder Node -file press.out -time -nodeRange 1 8 -dof 4 vel
recorder Element -file stress.out -time stress
recorder Element -file strain.out -time strain
recorder Element -file alpha.out -time alpha
recorder Element -file fabric.out -time fabric
# Create analysis
constraints Penalty 1.0e18 1.0e18
test NormDispIncr 1.0e-5 20 1
algorithm Newton
numberer RCM
system BandGeneral
integrator Newmark 0.5 0.25
rayleigh $a0 0. $a1 0.0
analysis Transient
# Apply confinement pressure
set pNode [expr $pConf / 4.0]
pattern Plain 1 {Series -time {0 10000 1e10} -values {0 1 1} -factor 1} {
load 1 $pNode 0.0 0.0 0.0
load 2 $pNode $pNode 0.0 0.0
load 3 0.0 $pNode 0.0 0.0
load 4 0.0 0.0 0.0 0.0
load 5 $pNode 0.0 $pNode 0.0
load 6 $pNode $pNode $pNode 0.0
load 7 0.0 $pNode $pNode 0.0
load 8 0.0 0.0 $pNode 0.0
}
analyze 100 100
# Let the model rest and waves damp out
analyze 50 100
# Close drainage valves
for {set x 1} {$x<9} {incr x} {
remove sp $x 4
}
analyze 50 100
# Read vertical displacement of top plane
set vertDisp [nodeDisp 5 3]
# Apply deviatoric strain
set lValues [list 1 [expr 1+$devDisp/$vertDisp] [expr 1+$devDisp/$vertDisp]]
set ts "{Series -time {20000 1020000 10020000} -values {$lValues} -factor 1}"
# loading object deviator stress
eval "pattern Plain 2 $ts {
sp 5 3$vertDisp
sp 6 3$vertDisp
sp 7 3 $vertDisp
sp 8 3 $vertDisp
}"
# Set number and length of (pseudo)time steps
set dT 100
set numStep 10000
# Analyze and use substepping if needed
set remStep $numStep
set success 0
proc subStepAnalyze {dT subStep} {
if {$subStep > 10} {
return -10
}
for {set i 1} {$i < 3} {incr i} {
puts "Try dT = $dT"
set success [analyze 1 $dT]
if {$success != 0} {
set success [subStepAnalyze [expr $dT/2.0] [expr $subStep+1]]
if {$success == -10} {
puts "Did not converge."
return success
}
} else {
if {$i==1} {
puts "Substep $subStep : Left side converged with dT = $dT"
} else {
puts "Substep $subStep : Right side converged with dT = $dT"
}
}
}
return success
}
puts "Start analysis"
set startT [clock seconds]
while {$success != -10} {
set subStep 0
set success [analyze $remStep $dT]
if {$success == 0} {
puts "Analysis Finished"
break
} else {
set curTime [getTime]
puts "Analysis failed at $curTime . Try substepping."
set success [subStepAnalyze [expr $dT/2.0] [incr subStep]]
set curStep [expr int(($curTime-20000)/$dT + 1)]
set remStep [expr int($numStep-$curStep)]
puts "Current step: $curStep , Remaining steps: $remStep"
}
}
set endT [clock seconds]
puts "loading analysis execution time: [expr $endT-$startT] seconds."
wipe
Dafalias YF, Manzari MT. “Simple plasticity sand model accounting for fabric change effects”. Journal of Engineering Mechanics 2004