3.1.5.22. HystereticPoly Material

This command is used to construct the uniaxial HystereticPoly material producing smooth hysteretic loops and local maxima/minima. It is based on a polynomial formulation of its tangent stiffness.

uniaxialMaterial HystereticPoly $matTag $ka $kb $alpha $beta1 $beta2 <$delta>

Argument

Type

Description

$matTag

integer

integer tag identifying material.

$ka

float

Tangent stiffness of the initial “elastic” part of the loop.

$kb

float

Tangent stiffness of the asymptotic part of the loop.

$alpha

float

Parameter governing the amplitude of the loop.

$beta1

float

Parameter governing the shape of the asymptotic region of the loop.

$beta2

float

Parameter governing the shape of the asymptotic region of the loop.

$delta

float

Asymptotic tolerance (optional. Default 1.0e-20).

Note

Determination of constitutive parameters is quite intuitive and is reported below, although, their identification can be performed by the strategy formulated in [SessaEtAl2020] implemented in the freeware available here.

The original formulation of HystereticPoly is reported in [VaianaEtAl2019]. Minor changes have been made in its implementation for OpenSees and make reference to the enhanced formulation reported in [SessaEtAl2022] and [Sessa2022].

The model may reproduce either force-displacement or stress-strain relationships. It is formulated by means of two asymptotic lines (blue) linked by transition curves (red):

../../../../_images/HystereticPoly01.gif

Parameter $alpha governs the transition between such curves so that:

\(u_0=\frac{1}{2}\left[\left(\frac{k_a-k_b}{\delta}\right)^{1/\alpha}-1\right]\)

\(\bar{f}=\frac{k_a-k_b}{2}\left[\frac{\left(1+2u_0\right)^{1-\alpha}-1}{1-\alpha}\right]\)

Where \(\bar{f}\) is the value at which the asymptotic line crosses the vertical axis and \(2u_0\) is the generalized displacement for which the transition curve reaches the asymptotic line.

In general, $alpha= \(\alpha\) influences the amplitude of the loop:

../../../../_images/HystereticPoly02.gif

while parameters $beta1 and $beta2 modify the shape of the loop:

../../../../_images/HystereticPoly03.gif

Example

The following constructs a HystereticPoly material with tag 1, parameters corresponding to line (d) of the table above and tolerance $delta = \(10^{-20}\).

  1. Tcl Code

uniaxialMaterial HystereticPoly 1  100.0 10.0 20.0 -10.0 10.0 1.0e-20
  1. Python Code

uniaxialMaterial('HystereticPoly', 1, 100.0, 10.0, 20.0, -10.0, 10.0, 1.0e-20)

Code Developed by: Salvatore Sessa, University of Naples Federico II, Italy

VaianaEtAl2019

Vaiana, N., Sessa, S., Marmo, F. and Rosati, L. (2019). “An accurate and computationally efficient uniaxial phenomenological model for steel and fiber reinforced elastomeric bearings.” Composite Structures, 211: 196-212. DOI: https://doi.org/10.1016/j.compstruct.2018.12.017

SessaEtAl2020

Sessa, S., Vaiana, N., Paradiso, M. and Rosati, L. (2020). “An inverse identification strategy for the mechanical parameters of a phenomenological hysteretic constitutive model.”, Mechanical Systems and Signal Processing, 139: 106622. DOI: https://doi.org/10.1016/j.ymssp.2020.106622

SessaEtAl2022

Sessa, S., Vaiana, N., Paradiso, M. and Rosati, L. (2022). “Thermodynamic Compatibility of the HystereticPoly Uniaxial Material Implemented in OpenSees.”, Advanced Structured Materials, 175: 565 - 580. DOI: https://doi.org/10.1007/978-3-031-04548-6_27

Sessa2022

Sessa, S. (2022). “Thermodynamic compatibility conditions of a new class of hysteretic materials.”, Continuum Mechanics and Thermodynamics, 34(1): 61 - 79. DOI: https://doi.org/10.1007/s00161-021-01044-w